Received 2 May 2006 Accepted 18 May 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Isil Yılmaz,^a N. Burcu Arslan,^a Canan Kazak,^a Kemal Sancak^b and Mustafa Er^b*

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, Trabzon, Turkey

Correspondence e-mail: isil_ylmaz@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.066 wR factor = 0.185 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-[(2-Hydroxybenzylidene)amino]-5-(2-thienylmethyl)-2*H*-1,2,4-triazol-3(4*H*)-one

In the title compound, $C_{14}H_{12}N_4O_2S$, the triazole ring is nearly coplanar with the phenol unit, the dihedral angle being 6.60 (3)°. The crystal structure involves an intermolecular N-H···O hydrogen bond and intramolecular O-H···N and C-H···O hydrogen bonds.

Comment

Triazole ring systems are typical planar six- π -electron partially aromatic systems and 1,2,4-triazole and its derivatives are used as starting materials for the synthesis of many heterocycles (Desenko, 1995). Di- or trisubstituted 1,2,4-triazole derivatives have also been reported to show antitubercular activities (İkizler *et al.*, 1998). In a previous paper, we reported that some 1,2,4-triazol-5-one compounds have antimicrobial effects (Demirbas *et al.*, 2004). The coordination chemistry of azoles acting as ligands for the production of organometallic compounds in the context of modelling biological systems has attracted much interest (İkizler & Sancak, 1992). In this paper, we report the crystal structure of the title compound, (I).

The title compound contains three rings, *viz*. the 1,2,4-triazole ring, *A*, the thiophene ring, *B*, and the phenol ring, *C* (Fig. 1). The dihedral angles between rings A/B, A/C and B/C are 67.39 (15), 6.60 (3) and 64.76 (1)°, respectively. These values indicate that the triazole ring is nearly coplanar with the phenol group. The C8=O2 bond length (Table 1) is comparable with those of similar C=O double bonds found in 1,2,4-triazole rings (Arslan *et al.*, 2004; Ocak, Kahveci *et al.*, 2003; Ocak, Coruh *et al.*, 2003).

In the crystal structure of (I), a strong intermolecular N– H···O hydrogen bond and intramolecular O–H···N and C– H···O hydrogen bonds are observed (Table 2 and Fig. 2).

Experimental

A mixture of 4-amino-5-(thien-2-ylmethyl)-2,4-dihydro-1,2,4-triazol-3-one (0.19 g, 0.001 mol) and salicylaldehyde (0.10 ml, 0.12 g, 0.001 mol) was warmed at 413–423 K for 1 h. The solid crude product was recrystallized from ethanol. The crystals were recrystallized several times from the same solvent and were then dried *in vacuo*

All rights reserved

© 2006 International Union of Crystallography

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

(yield 0.23 g, 80.43%). Spectroscopic analysis: IR (ν , cm⁻¹): 3166 (N-H), 3045 (aromatic C-H), 1711 (C=O), 1618 (C=N), 1606 (C=C); ¹H NMR: δ 4.26 (s, tyf-CH₂), 7.82–7.87 (m, aromatic H), 7.34-7.40 (m, 3H), 6.91-6.97 (m, 4H), 9.95 (m, N=CH), 11.95 (m, NH), 10.32 (s, OH); MS: M⁺ 300.92.

 ${\rm \AA^3}$

10648 measured reflections 2752 independent reflections

 $R_{\rm int}=0.176$

 $\theta_{\rm max} = 26.0^\circ$

1322 reflections with $I > 2\sigma(I)$

Crystal data

$C_{14}H_{12}N_4O_2S$	V = 700.36 (16) Å ³
$M_r = 300.34$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 1.424 \text{ Mg m}^{-3}$
a = 5.5879 (7) Å	Mo $K\alpha$ radiation
b = 9.2167 (12) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 14.3000 (19) Å	T = 293 (2) K
$\alpha = 77.528 \ (10)^{\circ}$	Plate, yellow
$\beta = 84.181 \ (11)^{\circ}$	$0.50 \times 0.21 \times 0.04 \text{ mm}$
$\gamma = 77.290 \ (10)^{\circ}$	

Data collection

Stoe IPDS-2 diffractometer
ω scans
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
$T_{\min} = 0.932, T_{\max} = 0.993$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0823P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.066$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.185$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.87	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
2752 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
190 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	(Sheldrick, 1997)
	Extinction coefficient: 0.025 (2)

Table 1

Selected geometric parameters (Å, °).

C9-N2-C8	108.7 (3)	C14-S1-C11	91.6 (3)
C9-N2	1.371 (5)	N3-N4	1.386 (5)
C9-N4	1.289 (4)	N1-N2	1.383 (4)
C8-O2	1.227 (5)	C14-S1	1.692 (6)
C5-O1	1.347 (5)	C11-S1	1.708 (4)

Figure 2

A packing diagram for (I), viewed approximately along the a axis. The N-H...O hydrogen bonds are indicated by dashed lines.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H7\cdots O2^{i}$	0.86	1.95	2.791 (4)	167
$O1 - H5 \cdot \cdot \cdot N1$	0.82	1.92	2.639 (4)	146
$C7 - H6 \cdots O2$	0.93	2.28	2.946 (5)	128

Symmetry code: (i) -x, -y + 1, -z + 1.

The high value of R_{int} indicates that the overall quality of the data may be poor due to the crystal quality. All H atoms were placed in calculated positions, with C-H = 0.93-0.97 Å, N-H = 0.86 Å and O-H = 0.82 Å, and refined using a riding model, with $U_{iso}(H) =$ $1.2U_{eq}(C,N)$ or $1.5U_{eq}(O)$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Arslan, B., Kazak, C., Kahveci, B., Ağar, E. & Şaşmaz, S. (2004). Acta Cryst. E60, o578-o579.
- Demirbas, N., Karaoglu, S. A., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem. 39, 793-804.
- Desenko, S. M. (1995). Khim. Geterotsikl. Soedin. (Chem. Heterocycl. Compd.), pp. 2-24 (In Russian).
- Farrugia, L. T. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. T. (1999). J. Appl. Cryst. 32, 837-838.
- İkizler, A. A., Demirbas, A., Cohansson, C. B., Celik, C., Serdar, M. & Yüksek, H. (1998). Acta Pol. Pharm. Drug Res. 55, 117-123.
- İkizler, A. A. & Sancak, K. (1992). Monatsh. Chem. 123, 257-263.
- Ocak, N., Çoruh, U., Kahveci, B., Şaşmaz, S., Ağar, E., Vázquez-López, M. & Erdönmez, A. (2003). Acta Cryst. E59, 0750-0752.
- Ocak, N., Kahveci, B., Şaşmaz, S., Ağar, E. & Erdönmez, A. (2003). Acta Cryst. E59, o1137-o1138.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.